Research in the Mousssaieff laboratory

Using a state of the art platform for metabolic profiling, we comprehensively characterize the metabolic content of biological systems, focusing on lipid networks. We use advanced cellular and in vivo models to study the involvement of metabolic perturbations in changes that occur during development and in the initiation and progression of disease.

We are studying metabolic perturbations, in particular in lipid metabolic networks, during development and pathological processes.

Metabolic shifts during early embryonic development

We have been studying metabolism of the early developing embryo, with the following Aims:


Aim 1. Define the metabolic changes that occur during the exit of pluripotent cells (PSCs) from pluripotency, and unveil their role in the cell differentiation.

We studied of the glycolytic shift during early differentiation of PSCs, and its effect on cell fate via changes in acetyl-CoA concentration and histone acetylation (Moussaieff et al, Cell Metabolism, 2015).


Aim 2.  Characterize the effects of maternal metabolism on the pre-implantation embryo.

For this Aim, we have been studying maternal and embryonic human samples, as well as the corresponding cell systems.

In collaboration with Dr. Assaf Ben Meir (Hadassah Medical Center), we collect human maternal samples from IVF patients: follicular fluid, granulosa cells and blood samples, as well as IVF media samples. We aim to use the lipid composition of these samples to get important insights into maternal and embryonic metabolic state, and correlate them to embryo developmental potential.


Aim 3.  Elucidate the metabolic phenotype of trophoblast stem cells. The trophectoderm envelopes the embryo, and later becomes the placenta. It plays a critical role in providing the embryo the environment required for development. In the pre-implantation embryo, the totipotent embryo differentiates into two major cell populations: the inner cell mass that will for the embryonic cells, and the trophectoderm that would form the placenta.

We are studying the metabolome of trophoblast stem cells (TSCs), to provide the first description of their metabolic phenotype and of the metabolic micro-environment they provide for the embryo.

Cancer metabolic heterogeneity

By utilizing the protocol developed by Arik for the metabolic analysis of cell populations within a tissue, we study the metabolic profiles of different cancer cell populations in collaboration with professor Eli Keshet (HUJI).


Metabolic perturbations during aging and neurodegenaration

​Changes in the lipid content of the plasma membrane have been known to play critical roles in aging, and especially with neurodegenerative processes. We therefore launched a project to characterize the lipid content in the brain of Alzheimer' disease (AD) patients in association with non-coding (nc)RNA expression, in collaboration with Prof. Hermona Soreq (HUJI).

Metabolic interactions of bacteria and host

​We are analyzing the changes in metabolic and especially lipid composition upon interaction with mammalian host cells, and investigating the roles of these metabolic shifts in bacteria function. In collaboraiton with Profs Ilan Rosenshine and Sigal Ben-Yehuda (HUJI).

Taken together, we are taking a new approach to address fundamental questions in development, cancer progression, aging and bacteria-host communication, based on shifts in metabolic, and in particular, lipid metabolic networks.